Extensions 1→N→G→Q→1 with N=C33 and Q=SD16

Direct product G=NxQ with N=C33 and Q=SD16
dρLabelID
SD16xC33216SD16xC3^3432,518

Semidirect products G=N:Q with N=C33 and Q=SD16
extensionφ:Q→Aut NdρLabelID
C33:1SD16 = C3xAΓL1(F9)φ: SD16/C1SD16 ⊆ Aut C33248C3^3:1SD16432,737
C33:2SD16 = C33:SD16φ: SD16/C1SD16 ⊆ Aut C33248C3^3:2SD16432,738
C33:3SD16 = C33:3SD16φ: SD16/C1SD16 ⊆ Aut C332416+C3^3:3SD16432,739
C33:4SD16 = F9:S3φ: SD16/C1SD16 ⊆ Aut C332416+C3^3:4SD16432,740
C33:5SD16 = C3xC32:2SD16φ: SD16/C2D4 ⊆ Aut C33244C3^3:5SD16432,577
C33:6SD16 = C33:6SD16φ: SD16/C2D4 ⊆ Aut C33244C3^3:6SD16432,583
C33:7SD16 = C33:7SD16φ: SD16/C2D4 ⊆ Aut C33244C3^3:7SD16432,584
C33:8SD16 = C33:8SD16φ: SD16/C2D4 ⊆ Aut C33248+C3^3:8SD16432,589
C33:9SD16 = C3xDic6:S3φ: SD16/C4C22 ⊆ Aut C33484C3^3:9SD16432,420
C33:10SD16 = C3xD12.S3φ: SD16/C4C22 ⊆ Aut C33484C3^3:10SD16432,421
C33:11SD16 = C3xC32:5SD16φ: SD16/C4C22 ⊆ Aut C33484C3^3:11SD16432,422
C33:12SD16 = C33:12SD16φ: SD16/C4C22 ⊆ Aut C33144C3^3:12SD16432,439
C33:13SD16 = C33:13SD16φ: SD16/C4C22 ⊆ Aut C33144C3^3:13SD16432,440
C33:14SD16 = C33:14SD16φ: SD16/C4C22 ⊆ Aut C33144C3^3:14SD16432,441
C33:15SD16 = C33:15SD16φ: SD16/C4C22 ⊆ Aut C3372C3^3:15SD16432,442
C33:16SD16 = C33:16SD16φ: SD16/C4C22 ⊆ Aut C33144C3^3:16SD16432,443
C33:17SD16 = C33:17SD16φ: SD16/C4C22 ⊆ Aut C3372C3^3:17SD16432,444
C33:18SD16 = C33:18SD16φ: SD16/C4C22 ⊆ Aut C33484C3^3:18SD16432,458
C33:19SD16 = C32xC24:C2φ: SD16/C8C2 ⊆ Aut C33144C3^3:19SD16432,466
C33:20SD16 = C3xC24:2S3φ: SD16/C8C2 ⊆ Aut C33144C3^3:20SD16432,482
C33:21SD16 = C33:21SD16φ: SD16/C8C2 ⊆ Aut C33216C3^3:21SD16432,498
C33:22SD16 = C32xD4.S3φ: SD16/D4C2 ⊆ Aut C3372C3^3:22SD16432,476
C33:23SD16 = C3xC32:9SD16φ: SD16/D4C2 ⊆ Aut C3372C3^3:23SD16432,492
C33:24SD16 = C33:24SD16φ: SD16/D4C2 ⊆ Aut C33216C3^3:24SD16432,508
C33:25SD16 = C32xQ8:2S3φ: SD16/Q8C2 ⊆ Aut C33144C3^3:25SD16432,477
C33:26SD16 = C3xC32:11SD16φ: SD16/Q8C2 ⊆ Aut C33144C3^3:26SD16432,493
C33:27SD16 = C33:27SD16φ: SD16/Q8C2 ⊆ Aut C33216C3^3:27SD16432,509


׿
x
:
Z
F
o
wr
Q
<